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The solution of the two-dimensional Poisson equation in a rectangle with periodic boun- 
daries in one direction and Dirichlet or Neumann boundaries in the other can be handled by a 
Fast Fourier Transform in one dimension and a fast nonperiodic procedure such as splines in 
the other. Such a solution is necessary for the simulation of semiperiodic plasma systems. A 
method is presented which is direct and of fourth order in both the electric potential and the 
electric fields. 

1, INTRODUCTION 

One of the components of any two-dimensional electrostatic particle simulation on 
a rectangular grid is the solution of Poisson’s equation 

($+$) dx, Y>=P(x> Y). 

A class of numerical simulations requires periodic boundary conditions in one 
direction and either Dirichlet or Neumann boundary conditions in the other direction. 
For these problems we need both the potential and the electric fields, which we define 
for simplicity as 

W, Y) = Vv(x, Y>. (2) 

A large volume of literature exists on the solution of Poisson’s equation to fourth- 
and higher-order accuracy and with various boundary conditions [l--S]. Little effort 
has been devoted, however, to the solution for which both the potential and the fields 
are obtained to high accuracy and for which the boundary conditions of our interest 
are easily implemented. We have found a direct scheme for solving Poisson’s 
equation from which the potential and the fields can be obtained to fourth-order 
accuracy. The scheme is easily implemented and requires only Fast Fourier 
Transforms [9] which are available on any modern computer. The method uses spline 
techniques and is unusual only in the introduction of the integrated spline, which 
turns out to be optimal for the representation of second derivatives. 
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In Section 2 we discuss a one-dimensional problem which will illustrate the 
technique. The method is applied to the two-dimensional Poisson equation in 
Section 3. Section 4 displays an example. Section 5 is the conclusion. 

2. THE ONE-DIMENSIONAL POISSON EQUATION 

Most of the features of the method for solving the two-dimensional Poisson 
equation can be easily illustrated by investigating the numerical solution of the one- 
dimensional Poisson equation. We concentrate on the one-dimensional problem, since 
it is less cluttered. The extension to two dimensions is then simple to implement. 

We consider cubic splines [lo] interpolating a set of equidistant points gi, 
j = 0, 1) 2 )...) n, where E(x) is the one-dimensional electric field. Let the distance 
between the points be Ax and the first and second derivatives in the knots be p,i and 
sj, respectively. For xj < x < xj+ 1 we write 

E(x) = Q + Pj(X - Xj) + fSj(X - Xj)’ + gj(x - xjy, (3) 

where gj is a constant which can be eliminated by the spline conditions. Applying the 
continuity conditions for splines, we find the following equations for the first and 
second derivatives : 

and 

iCsj+l + 4Sj + Sj- 1) = (d:,* -(Ej+,-2Ej++j-,). 

(4) 

(5) 

A standard Fourier mode analysis implemented by assuming 

Ej = E exp(ircj), Pj = P ev(W), K=kAx (6) 

leads to 

where 

PO(K)= 3 Sin K/[K(2 + COS K)]. (8) 

Note that (iK/AX)~ is the exact derivative of E, and PO(~) is a filter function. For 
small K we see that 

PO(K) = 1 - K4/180 + ... 
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and for K = x/2, and rt, 

IqK = 7r/2) = 314 = 1 - 0.045, W,(K = n) = 0. 
(10) 

The value K = rc corresponds to the “Nyquist wavelength” which is equal to two mesh 
widths. The long wavelengths are quite well represented up to half the Nyquist 
wavelength, whereas the shorter wavelength are heavily damped. This is a favorable 
filter characteristic, if we compute the p from the given gj:., because it damps short 
wavelength noise. It is ill suited, however, if E is the unknown quantity. According to 
Eq. (7) l? becomes singular due to the zero of W,(K) at K = n. 

Looking at the second derivative, Eq (5), in the same way is disappointing. The 
lowest order appriximation to the right-hand side of Eq. (5) is not improved. Using 
the same method as before, we find 

where 

W,(K) = 
6(1 - cos K) 

K2(2 + COS K) * 

(11) 

(12) 

For small K 

ws(K)= 1 f K2/12 + “’ (13) 

and for K = n/2 

w,(K) = 12/n’ = 1.216. (14) 

The filter W,(K) is greater than one, which is good for integration purposes, but the 
scheme is of second order only. The use of a spline to solve a second-order 
differential equation is thus hardly justified. 

A method which does yield fourth-order accuracy can be obtained by integrating 
Eq. (3) and making use of the continuity of the spline and its derivative. Let 

i 

X,*1 

vlj-1 -Vj= E(x’) dx’ 
Xl 

Writing down the same formula with j decreased by one and subtracting gives 
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We eliminate Ej using Eq. (4) and obtain 

cPj+l -zul,+~j-l=$$@,-l+ lOPj+Pj+l)* 

A modal analysis of Eq. (17) gives 

Lf!t Fv (K), P =- (Ax)2 v 

where 

PO(K) = 12(1 - cos K) 
K2(5 + cos K) * 

(17) 

(18) 

(19) 

For small K 

mv = 1 - rc4/240 + (20) 

and for shorter wavelengths 

@&/2) = $ = 1 - 0.0273, w&r> = $ = 0.6. (21) 

Equation (17) represents a fourth-order scheme. The short wavelengths are 
exaggerated by up to a factor of 7r2/6, rather than damped. Our principal interest, 
however, is the determination of the electric fields and we will see that if the fields are 
determined by fitting a spline through the (D’S, the short wavelength field components 
will be damped. We note here that Eq. (17) is actually quite old and has been used as 
early as 1935 [ 111 and more recently by Adam [8]. Its relation to splines has not 
previously been reported. We have seen that if Eq. (4) is used to determine the 
electric field, the short wavelength components of l? are amplified. We, therefore, put 
a spline through the qj’s and calculate Ej from 

Ej+ 1 + 4Ej + Ej- 1 = (3/AX)(Vj+ 1- pj- I), j = 2,..., n - 1. (22) 

The accuracy is obtained from mode analysis. We find 

with 

For small K 

E = P ‘5 W,(K) 

w,(K> = @#)/@&). 

(23) 

(24) 

(25) w,(K) = 1 - ~~/720 t 
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and for short wavelengths, 

W,(7c/2) = g = 1 - 0.01825, y&r) = 0. (26) 

231 

E is of fourth-order accuracy and the error coefficient is very small indeed. At half 
the Nyquist wavelength, the error is less than 2 %. 

For Dirichlet boundary conditions we prescribe the values (pi and q,, , the boundary 
values of the potential. In order to solve Eq. (22) we must supply E, and E,. This 
appears paradoxical because once p(x) has been determined, its derivative should be 
known everywhere. This is, in fact, the case since from Eq. (15) 

E,=~(“2-m,)-E,tA~@2-P~). 

En=-&,-‘P&-En-, tA$@.-Pn-d. (27) 

Neumann boundary conditions are more complicated. In order to find (o, and (D,,, 
we proceed as follows. A suitable combination of Eq. (15) and Eq. (22) gives 

-2Ej-,Ax=qj+, -44Oj+3~j-~+(AX/6)@j+,-22Pj+34,-,), 

where we have neglected the difference between Ej and Ej. When this is combined 
with Eq. (17), we obtain 

and 
rp, = 49, -&Ax + ((A~)~/24)@, - 6~2 - 7~~) (28) 

IPn=Vln-I + E, Ax + ((A~)~/24)(-7~, - 6p,-, t P, 2). (29) 

Equations (17), (28) and (29) are now exactly n equations for the n unknowns vi, 
with E, and E, prescribed. 

The features of the one-dimensional spline fitting solution of the one-dimensional 
Poisson equation can be carried over to the two-dimensional case. 

3. THE TWO-DIMENSIONAL POISSON EQUATION 

We now consider the solution of Poisson’s equation in two dimensions to fourth- 
order accuracy. We assume that in the x direction, the equation is periodic in an 
interval of length L,. First we write 

cp(x, v) = C COG eikx, k = (27r/L,)n, 
k 

dxl Y) = Ck Pk(y) eikx- (30) 
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It is advantageous to use x as the periodic variable because the x values are stored 
in a row in a FORTRAN program and are easily accessible to a FFT. 

We insert Eq. (30) into Eq. (1) but introduce a form factor a(~) (K = kdx), in 
addition, which will be chosen for our convenience. Equation (1) becomes 

2 

-$%(Y) - k2W V)k = P,(Y). 

Equation (3 1) is discretized according to Eq. (17) as 

12 
Y(‘Pk,,,+l --qk.u +qk,u-1) 
CAY) 

= @k.p-l +‘lOpk,, +Pk,p-1) + kZ~(~)h’k.u-~ + l”pk,w + qk,,itl)* 

We now introduce Fourier modes in the y direction, 

CP,(Y> = (D exdil’y); 1= (27c/L,)m, m = 0, 1) 2 )...) 

(31) 

(32) 

(33) 

and a corresponding expression for the charge density. With L = I Ay, IC = k Ax, the 
mode analysis can be written as 

(0 =-p 
/[ 

I2 
12(1 -cos1) 
A*(5 + cos 2) 

+ k%(K) 
I 

. 

To make the scheme fourth order, we choose 

U(K) = 
12(1 - cos K) 
K2(5 + COS K) ’ 

which for small K is 

(34) 

(35) 

U(K) = 1 - rc4/240. (36) 

This choice of the form factor keeps the error term of fourth order and makes the 
Fourier modes symmetric in the x and y directions. There is still an overemphasis of 
the short wavelength terms of up to a fector n2/6. We now write the tridiagonal 
system as 

(l -Ck)a)k,u+l - c2 + lock) V)k,iu + c1 - ck) qk.w- 1 

l@ zz- 

12 k,,,+l + lOPk,l, +Pk.u-I), ,u=2 “’ (n+ l), (37) 

with 

ck = k2a(K)/12. 
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(The solution to Eq. (37) can be determined once the boundary conditions are 
applied.) 

The boundary conditions must still be applied at the upper and lower boundaries. 
For Dirichlet boundary conditions rp k,, , (4k,n are given and the solution of Eq. (37) is 
straightforward. For Neumann boundary conditions, Eq. (37) must be supplemented 
by a generalization of Eqs. (28) and (29). 

--(l - ck)(l + 4cd pk., + (1 - jck + 8C:> Pk,2 

=(l -C,)E,,,dy-+ @k.3 + 2pk.2 - 3P,,,) AY* 

+ (l - 2ck) 
24 bk.3 + lop,,2 + Pk.&b’ (38) 

and 

(l - ck)(l + 4ck) qk,n - (1 - 3ck + 8~:) pk,n- I 

=(l -ck)Ek,,Ay++ @k.n-2 + 2Pk,n-l - 3P,,n)AY2 

- %@k., + lop,,,-, + P/c,,,-z)AY*- (39) 

The right sides of Eqs. (38) and (39) are known quantities. Once the qk,u + , have 
been calculated, we can proceed in two ways to obtain the fields: 

(a) Obtain the ,!?l,u from 

which is supplemented by 

El.1 + ‘5;~ = 2 (1 + Ck)(V)k,2 - qk,,) + ; @k,2 -Pk,l)& 

EL + EL- I =; t1 + ck)(~k,” - pk,n-1) + ; @k,n -Pk.=-1) AY* (41) 

These equations are a generalization of Eq. (27). For the x components of the electric 
field, we write 

‘i,, = jkucK) qk,p 3 (42) 

where a(k) is determined below. From the known I?:,, and i?l,@, we obtain ,?z,, and 
pz,,, the components of the electric field in x-y space, by a FFT. 
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(b) We obtain (o”,~ directly from v)~,~ by a FFT. E;1-, is calculated from 

R+ L,p +4~~,,+~~~.,..=(3/Ax)((o,.-,.,--~-,,,) (43) 

using a periodic spline. I?:,, is calculated from 

R,,+, +4q, +KI,u = (3/J4X)(V,.,,+ I -vv.u- I>. (44) 

This equation has to be supplemented by the Fourier transform of Eq. (41). Both 
methods appear to require about the same computer time. The form factor U(K) in 
(42) is determined by comparing (42) with (43). With a mode analysis, we 
immediately find 

O(K) = 
3 sin K 

- 
K(2 + COS K)’ 

(45) 

4. AN EXAMPLE 

In order to check the accuracy of the method, we have written a computer program 
to solve the equation 

2 + $= sin[(2n/8) k,x] sin[(272/8) k,y] 

subject to the boundary conditions ~(x, y = 0) = (D(x, y = 16) = 0 and periodic boun- 
daries for x = 0 and x = 16. k, and k,, are integers. The exact solution 

P=-[(f)‘(k~+k:)]m*sin($k,x) sin($$,y) (47) 

contains only a single mode, and provides a simple test of the estimated accuracy of 
the algorithm. From Eq. (20), we expect the relative error to vary as k4 = (k$ + k$)’ 
for values of k, and k, chosen for the right-hand side of (46). The equation was 
solved on a 16 X 16 mesh with Ax = AJJ = 1. Table I is a record for various runs of 
the average relative deviations, for example, AP,~, = (l/n) X:=1 IAcp, ]. Boundary 
points and mesh points at which the exact function was zero were excluded. Only 
values of k, and k, were changed from run to run. We normalized the relative error 
of the runs by dividing by k4. It is seen that the normalized errors in the table are 
approximately the same. This is expected in a fourth-order method. The table 
contains a few “mirror” cases, for example, (k,, k,) equal to (1,3) and (3, 1). The 
exact solutions are mirror images of each other. This symmetry is reflected in the 
table: The average errors for the potentials are the same and the errors for the electric 
fields exhibit approximately the same symmetry. The agreement is not perfect 
however, because of rounding errors, and the use of periodic and nonperiodic splines. 
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TABLE I 

AE,,, AEn ,. AE,, ,I AE,,,. __ - k4 k4 

I,1 9.95 x 1om5 2.48 x lo-’ 3.35 x 1om5 
132 1.32 x 10-j 5.28 x lo-’ 1.18 x 10-j 
I,3 7.64 x 10-j 1.64 x 10-j 7.51 x 10-j 

21 1.32 x 10-j 5.28 x lo-’ 9.59 x 1o-4 

2J 1.62 x 10-j 2.53 x IO-$ 6.55 x 1O-4 
2J 6.37 x 10-l 3.11 x lo-5 4.07 x 10-j 
331 7.64 x IO-” 7.64 x lo-* 5.06 x 10-l 
3J 6.36~10~' 3.76 x lo-’ 6.32 x 10-l 
333 8.49 x 10-j 2.62 x lo-’ 4.22 x 10-l 
4.1 2.64 x lO-2 9.13 x 10-s 1.98 x lo-* 
4.2 2.26 x lo-* 5.65 x lo-” 2.34 x lo-’ 
433 2.09 x 1O-2 3.34 x 10-5 2.51 x 1O-2 

3.47 x 1o-5 
9.22 x 1O-4 
5.55 x lo-’ 
1.19 x lo-) 
6.19 x 1O-4 
6.80 x lo-’ 
7.51 x 10-l 
4.11 x 10-l 
4.70x IO-’ 
2.62 x lo-’ 
2.04 x lo-* 
7.58 x 10-l 

8.38 x 1O-L 
4.72 x lo--’ 
7.51 x 1o-5 
3.84x IO-' 
1.02 x 1om5 
2.41 x lo-’ 
5.06 x lo-’ 
3.74 x lo-’ 
1.30 x 10-5 
6.85 x IO--' 
5.85 x lo-” 
4.00 x lo-” 

8.68 x lo-” 
3.69 x lo-’ 
5.55 x lo-’ 
4.76 x 10 ~5 
9.69 x lo-” 
4.02 x lo-’ 
7.51 x loo-” 
2.43 x lo-’ 
1.45 x lo-s 
9.06 x 10. ’ 
5.10 x lo-” 
1.21 x lo-‘ 

The accuracy obtained, even for wavelengths as short as twice the Nyquist 
wavelength, is quite satisfactory. 

5. CONCLUSION 

We have presented a method which can be used to provide solutions to Poisson’s 
equation in simulating bounded plasma systems. The method is direct and moderately 
fast and provides fourth-order accuracy to both the electric potential and the electric 
fields. In addition, it is easily implemented since only Fast Fourier Transforms and 
tridiagonal matrix inversions are used. A number of computer simulations of bounded 
plasma systems have recently appeared [ 12, 131 and this method may be useful in 
further investigations. 
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